碳化硅如何提升铸件质量
碳化硅如何提升铸件质量
2、预处理的作用
2.1 形核的原理在Fe-C共晶系中,灰铸铁在共晶凝固阶段由于石墨的熔点高,是共晶体的领先相,奥氏体借助石墨析出。以每个石墨核心为中心所形成的石墨+奥氏体两相共生共长的晶粒称共晶团。存在于铸铁熔液中的亚微观石墨聚集体、未熔的石墨微粒、某些高熔点硫化物、氧化物、碳化物、氮化物颗粒等,都可能成为石墨的非均质晶核。球墨铸铁的形核与灰铸铁形核没有本质区别,只是核心物质中增加有镁的氧化物和硫化物。
铁液中石墨的析出必须经历形核和生长两个过程。石墨的形核有均质形核和非均质形核两种方式。均质形核亦称自生晶核。铁液中有大量起伏不定的,超过临界晶核尺寸的,近程有序排列的碳原子集团,可能成为均质晶核。实验证明均质晶核的过冷度很大,必须主要依靠非均质晶核作为铁液中石墨的生核剂。铸铁熔液中存在大量外来质点,每1cm3铁液中,仅氧化物质点就有500万个。只有那些与石墨的晶格参数、位相存在一定关系的质点,才能成为石墨形核基底。晶格匹配关系的特征参数称平面失配度。当然只有晶格平面失配度小,才能够让碳原子容易与石墨晶核匹配。如果晶核材料是碳原子,那么它们的失配度为零,这样的成核条件最好。
碳化硅在铁液内分解成碳和硅比铁液本身含有的碳和硅的内能大,铁液本身所含的Si溶于奥氏体中,球墨铸铁铁液中的碳,部分在铁液中形成石墨球,部分在奥氏体中尚未析出。因此碳化硅的加入,有很好的脱氧作用。
Si + O2 → SiO2 (1)
MgO +SiO2 →MgO∙SiO2 (2)
2MgO +2SiO2→ 2MgO∙2SiO2 (3)
顽辉石成分MgO∙SiO2和镁橄榄石成分2MgO∙2SiO2与石墨(001)失配度高不易作为石墨形核的基底。当经过含有Ca、Ba、Sr及Al与硅铁的孕育合金铁液处理后,得到:
MgO∙SiO2 + X → XO∙SiO2 + Mg
2.2 非平衡石墨的预孕育:
一般,通过孕育来扩大非均质形核范围,铁液中非均质形核的作用:①促进共晶凝固阶段C大量析出并形成石墨,促进石墨化;②减小铁液过冷度,减少白口倾向;③增加灰铸铁共晶团数或增加球墨铸铁石墨球数。
SiC是炉料熔炼过程中加入的。碳化硅熔点2700℃,在铁液中不熔化,只按下列反应式融熔于铁液。
SiC+Fe→FeSi+C(非平衡石墨)
铸铁熔炼时加入碳化硅,对于灰铸铁,非平衡石墨的预孕育,大量生成共晶团并提高生长温度(减小相对过冷度),有利于形成A型石墨;晶核数量增加,使片状石墨细小,提高石墨化程度减少白口倾向,从而提高力学性能。对于球墨铸铁,结晶核心增多使石墨球数增加,球化率得以提高。
2.3 消除E型石墨过共晶
灰铸铁,C型、F型初生石墨在液相形成,由于生长过程不受奥氏体干扰,一般情况下,容易长成大片状且分枝少的C型石墨;薄壁铸件快速冷却时,石墨会分叉生长成星状的F型石墨。[4]
共晶凝固阶段生长的片状石墨,在不同化学成分和不同过冷条件下,生成不同形态和不同分布的A、B、E、D型石墨。
A型石墨在过冷度不大和成核能力较强的共晶团内生成,在铸铁中均匀分布。细片状珠光体中,石墨长度越小,抗拉强度越高,适用于机床及各种机械铸件。
D型石墨为点、片状的枝晶间石墨,呈无方向性分布。D型石墨铸铁铁素体量高,力学性能受影响。但D型石墨铸铁奥氏体枝晶多,石墨短小卷曲,共晶团呈球团形,所以与相同基体A型石墨铸铁相比,往往具有较高的强度。
E型石墨是一种比A型石墨短小的片状石墨。与D型石墨一样位于枝晶间,统称为枝晶石墨。E墨容易在碳当量低(亚共晶程度大)、奥氏体枝晶多而发达的铸铁中产生。这时,共晶团与枝晶交叉生长,由于枝晶间共晶铁液数量较少,析出的共晶石墨只有沿着枝晶方向分布,具有明显的方向性。形成E型石墨的过冷度大于A型石墨小于D型石墨,它的粗细、长短处于A、D型石墨之间。E型石墨不属于过冷石墨,经常与D型石墨伴生。E型石墨的方向性枝晶间分布,使铸铁很容易在较小的外力作用下,沿着石墨排列方向呈带状脆断。所以出现E型石墨,用手可以掰断小型铸件的边角,铸件强度大大下降。随着含碳量的增加,形成细小枝晶间石墨所必须的冷却速度提高了,产生枝晶间石墨的可能性减少了。熔液高度过热以及长时间保温会使过冷度增大,从而提高枝晶生长速度,使枝晶变长,方向性更明显。用SiC对铁液做预孕育处理时,同时减小初生奥氏体的过冷度,此时观察到短的奥氏体枝晶。消除了E型石墨产生的结构基础。
2.4 提高铸铁质量
对于球墨铸铁,在球化剂加入量相同的情况下,用碳化硅进行预处理,镁的最终收得率较高。用碳化硅预处理的铁液,如果保持铸件残留镁量大致相同,球化剂的加入量可以减少10%,球墨铸铁的白口倾向得到缓解。
碳化硅在熔炼炉内,除去(1)式反应所示在铁液中增碳、增硅以外,还进行式(2)、(3)的脱氧反应,如果加入的SiC靠近炉壁,生成的SiO2会在炉壁沉积增加炉壁厚度。在熔炼的高温下,SiO2将发生式(4)的脱碳反应,式(5)、(6)的渣化反应。
(7) 3SiC+2Fe2O3=3SiO2+4Fe+3C
(8) C+FeO→Fe+CO↑
(9)(SiO2)+2C=[Si]+2CO(气态)
(10)SiO2+FeO →FeO▪SiO2 (渣)
(11)Al2O3+SiO2→Al2O3▪SiO2 (渣)
2.5 碳化硅的使用方法
3、结束语
免责声明:平台所提供的信息及资料除原创外,部分内容来源于网络等媒体,版权归原作者及媒体网站所有,平台力求尊重原创、尊重版权,尽可能标注版权信息和转载来源;如出现信息不准确或作者署名有误等情况,敬请原作者谅解,并立即通知平台,我们将调查核实后予以更正或删除,同时向您表示歉意!

您的当前位置:
